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Abstract

When considering complex systems (i.e. systems composed of multiple components) in practice,
the failure behaviour of the components is usually not known precisely. This is particularly true
in early development phases of a product. We study the influence of uncertainties in the marginal
distributions of the component’s failure time on one-dimensional properties of the system’s failure
time (e.g. expectation, quantiles). We do not assume that the components are independent;
instead we require that their dependence is given by a known copula. We consider two approaches:

In the first approach we assume that the margins have a bounded distance from known distribu-
tions. This approach leads to bounds on the one-dimensional properties and requires the solution
of a non-trivial optimization problem. We provide solutions for some special cases.

The second approach is Bayesian and assumes some prior distribution on the marginal distri-
butions. For example, one may assume that the margins belong to parametric classes and that
distributions on the parameters are given. Simulation can be used to obtain the distribution of
one-dimensional properties of the system’s failure time.

1 Introduction

We consider a classical complex system allowing just two states: working (coded as 1) and failed (coded as
0). We assume that the system consists of n components and that the state of the components determines
the state of the system, i.e. we have a structure function ® : {0,1}" — {0,1}. In this paper, we assume
® to be monotone, meaning that & is monotone in each component, ®(0,...,0) = 0 and ®(1,...,1) = 1.
The nonnegative random failure times of the components are denoted by T1,...,T,. Let X;(t) = 1{1;5>¢
be the state of the ith component at time ¢, where 1 denotes the indicator function. The probability that
the system has failed up to a given time ¢ is F5(t) := P(®(X,(¢),...,X,(t)) = 0). For further discussion of
complex systems we refer to (Aven and Jensen 1999).

If H denotes the joint cumulative distribution function of the failure times T1,...,7T, and Fi,..., F,
denote their marginal distributions by Sklar’s theorem there exists an n-copula C such that H(ty,...,t,) =
C(Fi(t1),...,Fn(tn)). Recall that an n-copula is an n-variate cumulative distribution function with margins
that are uniformly distributed on [0,1]. If Fi,...,F, are continuous then C is uniquely determined. If
Ti,...,T, are independent then C' can be chosen as the product copula I(z1,...,2,) = z122...2,. For
further details we refer to (Nelsen 1999) and (Joe 1997).

In practice, H is usually not known precisely. This is particular true in early development phases.
Often, one is interested in one-dimensional properties of the system distribution F'° like the expectation or
quantiles. These properties are defined by mappings from the the space of cumulative distribution functions
of nonnegative random variables, which we call D, into R = R U {—o00,00}. Say ¢ : D — R is one of
these mappings. We want to study how imprecise knowledge of H influences q(F?). To simplify this task we
restrict ourselves to uncertainties about the marginal distributions F1, ... F,, and assume that the dependence
structure of H is given by a known copula C. We consider two approaches. In the first approach we assume
that we know Gi,...,G, € D such that d;(F;,G;) < ¢ for some ¢; > 0 where di,...d, are functions
measuring distances in the space D. To derive the resulting bounds on g(F*®) we have to solve a non-trivial
optimization problem. We consider this approach in section 3.



The second approach is Bayesian in nature. We assume that the marginal distributions F1, ..., F}, depend
on some parameters 6y,...,60,. These parameters do not have to be one-dimensional. We assume that the
distribution of (61,...,6,) is known. In section 4 we consider this approach and give an example. In section
5 we will compare aspects of the two approaches.

Before starting with the two approaches we show in section 2 how the marginal distributions Fy,...F,
can be separated from the structure function ® and the copula C in the computation of F*°.

Proofs of the results can be found in (Gandy 2004).

2 System Reliability with dependent Components

We will introduce a function G¢,c and show how, together with the marginal distributions, it determines
the cdf of the system FS. Let ® : {0,1}" — {0,1} be a monotone structure function and let C' be an
n-dimensional copula. Let C be the probability measure on ([0,1]", B([0,1]")) induced by C. For t € [0,1]
let Bf :=[0,t] and B! := (t,1]. Let Go,c : [0,1]" — [0,1] be given by

Goc(ti,... ty) :=1— Z CP(:E)CN' (1_"[ B;’;) .

xze{0,1}"

Lemma 1. Let T1,...,T, be nonnegative random variables with marginal distributions F = (Fy,...,F,) €
D™ and with copula C. Fort € Ry = [0,00) let X;(t) := 1yer}. Let ® be a structure function and FS € D
the cumulative distribution function of the complex system having structure ® and components with lifetimes
Ti,..., Ty, that is F5(t) = P(®(X1(t),..., Xn(t)) = 0).

Then it follows that FS(t) = Ge,c(F(t)), for each t, i.e.

FS=GgcoF.
The following lemma, is a consequence of the assumption that @ is monotone and of properties of copulas.
Lemma 2. Gg,c s nondecreasing and continuous.

Ezxample 3. For a parallel system with n components, i.e. the system fails when all components have failed,
®(z1,...,2zn) =1 —[], (1 — ;) and hence Gs,c = C.

In the case of a serial system, i.e. the system fails when a single component fails, ®(z1,...,z,) = [[1-; z:.
If there are just n = 2 components then G c(t1,t2) = t1 + t2 — C(t1,12).

Figure 1 illustrates G ¢ for n = 2 components.

Figure 1: Hllustration of Gg ¢ in the case n = 2. The copula C induces a measure on [0,1]%2. The value of
Ga,c(t1,t2) is the measure of the shaded area in the case of a parallel/serial system (from left to right)

Ezample 4. If the product copula II(u) = []_, u; is used, i.e. the components are independent, then

Gon(t,...,tn) =1— Z P(x) Ht,%_w"(l — ;)"
i1

zc{0,1}"



3 Bounds on the Margins

In this section, we want to study how one-dimensional properties of the system’s cumulative distribution
function behave if only bounds on the margins are known. More formally, let & be a monotone structure
function, let C' be an n-copula and suppose we know that the marginal distributions Fi,..., F, € D of the
failure times satisfy d;(F;,G;) < €;,4 = 1,...,n, where G1,...,G, € D are known cumulative distribution
functions, ¢; > 0 and d; : D x D — R, measure distances between cumulative distribution functions.
Examples for d; are the supremal distance doo (F, H) := sup;cg, |F(t)—H(t)|, Lp-distances on the cumulative

distribution function d,(F, H) := ([, |F(t) — H(t)|Pdt) t/r (for some p > 0), and L,-distances on the inverse

1
cumulative distribution function d,'(F, H) = ( f(O,l) (F~Y(t) - H _l(t))pdt) r (for some p > 0). dy*' is
called Mallow’s metric.

We are interested in a one-dimensional property of the system’s cumulative distribution function which we
assume to be given by a function ¢ : D — R. Examples for ¢ include the expectation E(F) := [°1— F(t)dt
and quantiles Q,(F) := inf{t € R} : F(t) > p} (for some 0 < p < 1).

In practice it is interesting to know the minimal possible value of g(F°) given the restrictions on the
margins. For this, the following optimization problem over F = (Fy,..., F},) has to be solved.

q(F®) = ¢(Go ¢ o F) — min
(¥){ F € D
dz(Fz;Gz) S Eiai = 17"'7”

We are not aware of a general solution of (x). However, for some important special cases solutions can be
given.
For the following we use the usual stochastic ordering on D, i.e. F < G iff F(z) > G(z) for all z € R,..

Proposition 1. If q is nondecreasing and d = doo then FO given by
Flo(t) = (Gi(t) +e) A1
is a solution of ().

This is a consequence of the monotonicity of ® and ¢g. Note that the functions £ and ), are nondecreasing.
Next, we consider (x) if ¢ = @, that is if we are interested in quantiles.

Proposition 2. Suppose that for each i, the distance d; has the property that if Hy, Hy,Hy € D and
Vit € R+ : |H0(t) — Hl(t)| < |H0(t) — Hz(t)| then di(Ho,Hl) < di(Ho,Hz).
Furthermore, suppose that ¢ = Qp for some 0 < p <1.
Fori =1,...,n, let G}*(t) := Gi(t) V 21[5,00)(t), 2i(s) := sup{z € [0,1] : di(G;,G}7) < €} and G* :=
Gy, Gy,

Then a lower bound for the optimal target value of () is given by to := inf{t € Ry : Gs.c(G'(t)) > p}.

To actually comupte tg, often one has to resort to numerical methods.
Solutions for the special cases of parallel and serial systems with independent components when
di(F,H) = [;° |F(z) — H(z)| dz and ¢ = E are also possible.

4 Bayesian approach

The second approach is Bayesian in nature. We assume that the marginal distributions Fi, ... F,, depend
on some parameters 6y,...,60,. These parameters do not have to be one-dimensional. We assume that the
distribution of (61,...,6,) is known.

As a result of this approach one will get a distribution of g(F). Explicit formulas for this distribution in
the general case cannot be expected. However, using simulation one can get an impression of this distribution.



Example 5. Consider a 2-component serial system. Assume that the joint distribution of the failure times
follows a Marshall-Olkin distribution, i.e. Ty = min(Zy, Z12), T> = min(Zs, Z12), where Z;, 25,715 are
independent and exponentially distributed with rates A1, A2, A12. The copula of the joint distribution of T
and T is a generalized Cuadras-Augé copula Cy g(u,v) = min(u' =%, uv'~?) where a = A12/(A\1 + Ai2) and
B = A12/(As 4+ A12). Details of this can be found in (Nelsen 1999, Chapter 3.1.1).

Assume that we know that Cy5,0.5 is the copula of our system and that 7 and T, are exponentially
distributed with rates 6; and 62, where 6; and 85 are i.i.d. following a uniform distribution on [0.005,0.015].
Then the cumulative distribution function of the 0.1-quantile and the 0.2-quantile of the system is shown in
the left diagram of Figure 2. If we replace Cy.5,0.5 by the Fréchet-Hoeffding lower bound copula W (u,v) =
max(u + v — 1,0), the product copula II(u,v) = uv or the Fréchet-Hoeffding upper bound copula M (u,v) =
min(u,v) the cumulative distribution function of the 0.2-quantile of the system is as shown in the right
diagram of Figure 2.

Figure 2: Left: cdf of Qo.1(F®) and Qg.2(F®) of a 2-component serial system with copula Co.5,05-
Right: cdfs of Qg.o(F®) of the same system with copulas (from left to right) W, II, Co.5,05 and M.
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5 Comparisons

A problem of the approach of section 3 is that it only yields a bound. This bound may be too pessimistic.
Furthermore, in order to compute this bound one has to solve a non-trivial optimization problem. The
advantage is that one does not only consider marginal distributions within a certain parametric class as in
the approach of section 4. The advantage of the Bayes approach is that it yields a distribution of properties
of the system’s failure behaviour which may be more realistic than just a fixed bound. Since this distribution
can be evaluated using simulation the Bayes approach is relatively straightforward to apply. Furthermore,
the Bayes approach can be generalized to incorporate uncertainties in the copula.
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